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Hard and Soft-Core Equations of 
State for Simple Fluids 
I I Characteristic Curves for Argon? 

J O H N  S T E P H E N S O N  AND H .  K .  LEUNGS 

Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada 

(Received August 4, 1978) 

A detailed discussion is given of the geometrical properties and the physical significance of the 
characteristic curves of a simple fluid, with specific reference to experimental results for argon. 

1 INTRODUCTION 

In this second paper of this series,' we shall be concerned with characteristic 
curves, which are a class of loci of extrema of the compressibility factor 

Z s PV/RT (1) 
along isobars, isotherms and isochores. Characteristic curves have been 
introduced by Brown,' and used by him to test the thermodynamic con- 
sistency of experimental Joule-Thomson (Joule-Kelvin) inversion curves. 
We shall study characteristic curves, with specific reference to fluid argon, 
under the following headings : 

i) Definition of characteristic curves and equations of loci; 
ii) Termination temperatures and the virial expansion; 
iii) Physical significance and features of geometrical interest. 

t Research supported in part by the National Research Council of Canada through grant no. 
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250 J .  STEPHENSON AND H. K .  LEUNG 

In the following paper3 we shall examine to what extent characteristic curves 
may be accounted for by a hard-core type equation of state. Since the 
properties of characteristic curves are not generally well known, we shall 
find it informative and convenient to rederive and summarize some of Brown’s 
work’ in a notation perhaps more familiar to thermodynamicists. Certain 
of the more important characteristic curves are mentioned by Rowlinson in a 
review article4 

2 DEFINITION OF CHARACTERISTIC CURVES 

Various characteristic curves are sketched in Figures 1, 2 and 3. We re- 
produce Brown’s diagram in Figure 1, and “experimental” curves for argon 
calculated from the equation of state constructed by Gosman, McCarty 
and Hust’ in Figures 2 and 3. The zeroth order characteristic curve, denoted 
by J (by Brown) is defined by the requirement 

z = 1, (2) 

PV = RT. (3) 
Threefirst order characteristic curves, denoted A, B, C, are defined by the 
requirements that 2 be at an extremum (i.e. maximum, minimum or point of 

so that along this line the ideal gas relation is numerically valid: 

I I-- 
/ - ,A” , 

FIGURE 1 
7 = In( T/T,) diagram, after Brown2 The critical point is labelled 0. 

Schematic graphs of characteristic curves sketched in the n = In(P/P,) vs 
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1.0 

0.0 

-1.c 

-2.0 

FIGURE 2 Logarithmic pressure vs temperature diagram for argon, showing characteristic 
curves. Critical data for argon used to scale the axes are P, = 48.34 atmospheres, p, = 13.41 
mole/kitre and = 150.86 K. The vaporization and fusion curves are included. 

FIGURE 3 Density vs log. temperature scaled diagram for argon, showing characteristic 
curves. The liquid and gas ( 1  and g) branches of the coexistence curve, and the liquid density 
along the fusion curve are included. The zero pressure locus is labelled P o ,  and the zero isotherm 
slope locus, PI. 
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252 J.  STEPHENSON AND H. K. LEUNG 

horizontal inflexion) along isochores, isotherms and isobars respectively: 

A ,  Amagat curve, g)v = 0, or @) = 0, alongisochores; (4a) 
V 

B, Boylecurve, g) = 0, or ($$) = 0, along isotherms; (4b) 
T T 

C, Charles curve, 6) = 0, or g) = 0, along isobars. (4c) 
P P 

It is important to notice which of the three variables P ,  V (or p )  and T is 
held constant in each case. Substituting for Z one may rewrite equations (4) as 

A ,  g)v=T; P 

B,  (g) = -v; P 
T 

V 

If desired, one may introduce the density p into (5) in place of V. The Eq. ( 5 )  
for A,  B and C admit simple geometrical interpretations in terms of tangent 
conditions. For example, at any point on A the tangent to the corresponding 
isochore passes through the origin in the P-T diagram. Analogous properties 
hold for B and C in the P-p and V-T diagrams respectively. 

Following Brown we next introduce the dimensionless quantities a, fl  and y 
(Brown’s K ) :  

a In Z a l n  V T av 
y = 1 + ( - )p  dln T = ( - ) p  dln T = - V (-) dT p’ 

The partial derivatives in f l  and y are respectively related to the isothermal 
compressibility and the isobaric coefficient of thermal expansion. Clearly 

4 = Y (7) 
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EQUATIONS OF STATE FOR FLUIDS I1 253 

and 

(A)v = (8b) 

a ln  T d l n T  @c) 

Then Eq. ( 5 )  for the first order characteristic curves may be written (compare 
the definition of the zeroth order characteristic curve in (2)) 

Second order characteristic curves are now defined via derivatives of a, p 
and y along isobars, isotherms and isochores. There are six independent 
second order curves. From the Amagat line variable a we construct 

a = p = y = l .  (9) 

A P ,  (g) P =o, UOa> 

A v ,  (&) V = 0. (W 
From the Boyle curve variable /3 we construct 

B P ,  (g) P = 0 ,  (1la) 

. BT3 (g) T =o, 

B y ,  (g) V =o, ( S A T ) .  

(1 lb) 

(1W 
By (Sb), the loci BY and A,  are equivalent, and will be called A, .  Then from 
the Charles curve variable y we construct 
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254 1. STEPHENSON AND H. K .  LEUNG 

c,, (g) =o, (SAP) .  
V 

It is easy to see using (8a) that the loci C7. and BP are equivalent, and using (8c) 
that the loci Cy and AP are equivalent. 

All the characteristic curves can be constructed, at least numerically, once 
the equation of state is supplied, with P being expressed as a function of p 
and T. The explicit combinations of partial derivatives of P required for 
this purpose are presented in Table I for the ten characteristic curves defined 
above. We have employed the equation of state for argon constructed by 

TABLE I 
Defining equations for characteristic curves, expressed in terms of the pressure and its 
density and temperature partial derivatives. The termination temperature of each locus 
is also quoted. 

Symbol Termination 
for locus temperature 

Equation of 
characteristic curve 

C 

AP 

AT 

A" 

TB 

TC 

T D  

TC 

T B  
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EQUATIONS OF STATE FOR FLUIDS I1 255 

Gosman, McCarty and Hust’ to obtain “experimental” characteristic 
curves, which are displayed in the P vs T and p vs T diagrams in Figures 2 
and 3. 

3 TERMINATION TEMPERATURES AND VIRIAL EXPANSlON 

One observes that the ten characteristic curves terminate on the temperature 
axis at zero density at six distinct temperatures, which will play an important 
role in the theory of the second virial coefficient B to be developed in sub- 
sequent papers. By inserting a virial expansion of the form 

into the equations for the various characteristic curves listed in Table I ,  
and retaining only the leading order terms, which are of order p, one im- 
mediately finds that the termination temperatures are located by quite simple 
relations between the second virial coefficient B and its first and second 
temperature derivatives, B and B. Graphs of the second and third virial 
coefficients B and C for argon are presented in Figure 4. 

z = 1 + Bp + c p z  + Dp3 + ... (13) 

FIGURE 4 Scaled second and third virial coefficients for argon5 versus temperature. E* = E/b 
and C* = C/hz ,  where b = 35.70 cm3/mole = 4 x the volume of the molecules in a mole, 
and u = 3.05 A = molecular diameter, taken from the square well virial coefficient data of 
Sherwoodand Prausnitz.6Thecorrespondingreduced temperature T* = kT/c,withE/k = 93.3K. 
Over a wide range of (high) temperature, C* = 3 = hard sphere third virial coefficient.‘ 
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256 J.  STEPHENSON AND H .  K. LEUNG 

0 5 T 10 
FIGURE 5 Schematic graph of second virial coefficient E vs temperature (scaled), based on 
the model B = 4(T-”’ - T I ) ,  so the Boyle temperature TB = 1.  The termination tempera- 
tures T,, T,, T,, TA and T, are indicated, with T,  = 4 and TE = 16. In practice the inflexion 
point T, is hard to detect. 

The zeroth order locus J and the Boyle curve B terminate at the same 
temperature Ts, called the Boyle temperature. For the three first order curves 
we have three distinct termination temperatures located as follows: 

Amagat curve A terminates at TA, where B = 0; 

Boyle curve B terminates at TB, where B = 0; 

Charles curve C terminates at T,, where B = TB. 

(14a) 

(14b) 

(1W 

The expected schematic behaviour of the second virial coefficient B is 
illustrated in Figure 5. The Boyle temperature TB is located by the vanishing 
of the second virial coefficient. The Charles temperature Tc is also the Joule- 
Thomson inversion temperature (see Section 7 below), and is located by the 
geometrical condition that the tangent at T, passes through the origin. And 
T, corresponds to the position of the maximum in the second virial co- 
efficient, which is not often observed experimentally, first because it occurs 
at fairly high temperatures compared with TB, and secondly because the 
graph of B vs T is rather flat over an extensive range of T above T,. 

Termination temperatures for the second order characteristic curves are 
located similarly, with the following results: 
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EQUATIONS OF STATE FOR FLUIDS I1 257 

BT terminates at TB, where B = 0, 

Bp terminates at Tc, where B - TB = 0, 

C p  terminates at TF, where B - TB + T2B = 0, 

AT terminates at TA, where B = 0, 

AY terminates at TE, where B + TB = 0. 

(W 
(15b) 

( 15c) 

(154 

A ,  terminates at T,, where B = 0, 

(154) 

Three additional distinct termination temperatures are required for C,, 
AP and A y .  The locus A, terminates at TD where B = 0 and the second virial 
coefficient undergoes inflexion, Figure 5.7”’ will be of great importance later 
on in connection with the locus of extrema of the constant pressure specific 
heat, C,. 

The termination temperatures in increasing order are 

T B  < Tc < TF < TA < TO < TE. (16) 

We note here that for argon, only TB, Tc and TF can be extracted from the 
“experimental” second virial coefficient. Using the Gosman, McCarty and 
Hust equation of state, we have 

TB = 413.8, Tc = 795.0, TF = 1,540, (17) 

so 

Noting that the experimental critical temperature for argon is T,  = 150.86 K, 
we have also 

(19) 
TB Tc TF 
T,  T,  T,  
- = 2.743, - = 5.270, - = 10.21. 

The appropriate shape of the characteristic curves near the temperature 
axis may be determined by resubstituting the virial expansion (13) in the 
expressions for the various loci, Table I, and retaining terms of order p and p z  
which involve the second and third virial coefficients B and C.  The final 
slope of a locus at p = 0 can then be obtained correctly in both the p-T and 
P-T diagrams. It is of interest to compare the final slopes (dp/dT), of loci 
which have a common termination temperature. The loci which meet the 
temperature axis at the Boyle temperature TB are J ,  B and BT. For small p 
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258 J .  STEPHENSON AND H .  K .  LEUNG 

these loci have the forms 

B B 

B 
B :  p - - -  

where T I TB, B I 0, B =- 0 and C > 0. One expects the third virial co- 
efficient C to be positive for temperatures at and above the Boyle temperature. 
Since p must be positive, these loci must lie on the low temperature side of 
TB, where B I 0 and B > 0. These two loci C and Bp meet at the Charles 
temperature T,, where 

(TB - B )  B 
(21a) (2C - TC)’  

c: p - 

where T I T,, T B  - B 2 0, B < 0 and 2C - TC > 0. One expects the 
temperature derivative C of the third virial coefficient to be negative in the 
relevant temperature range.6 These two loci lie on the low temperature side 
of where B < 0. At the Amagat temperature T,, the loci A and AT termin- 
ate with 

B B 

where T I TA, h I 0, B < 0 and C < 0. Again, since c < 0 these loci lie 
on the low temperature side of TA . Various simple numerical relationships 
between the above final slopes are evident. 

4 PHYSICAL SIGNIFICANCE OF LOCI, AND FEATURES OF 
INTER EST 

In Sections 4 to 8 we give an account of the geometrical inter-relations 
between the zeroth order locus J and its three derived first order loci, A, B, and 
C, and between each first order locus, A, B and C, and its three derived second 
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EQUATIONS OF STATE FOR FLUIDS 11 259 

order loci. Intersections with loci of extrema along isotherms of the principal 
specific heats C, and C, will be noted. We also summarize briefly the 
physical significance of the loci A, B and C, which has been noted previously 
by Brown and Rowlinson. Novel features enter in the geometrical properties 
of loci in the V-T (or p-T)  diagram, and in the observation of an extension of 
the locus B, into the liquid region where it reappears effectively as a second 
branch in the P-T diagram. 

We note that if any particular characteristic curve L has a maximum in the 
P-T diagram where (dP/dT),  = 0, then generally at this point (dp/dT) ,  # 0, 
and is negative, so (dP/dp), = 0, and there is also a maximum in the P-p 
diagram. Also the locus L is tangent to the corresponding isobar in the p-T 
diagram. Again, if L has a maximum in thep-T diagram, where (dp/dT),  = 0, 
then generally at this point (dP/dT) ,  # 0 and is positive, so (dP/dp),  = co 
and L is vertical in the P - p  diagram. Also the locus L is tangent to the cor- 
responding isochore in the P-T diagram. 

Also at this stage, we observe that the loci A,  A,, AV and A T ,  whose termina- 
tion points are associated with softening of the hard core, are generally 
separate from all the other loci, which are clustered in the comparatively low 
temperature and pressure region around the vaporization curve and the 
critical point. The notable exception is A ,  which penetrates amongst the other 
loci and terminates on the vaporization curve. In addition, certain loci: 
B,, B, and C p ,  actually pass through the critical point by virtue of the 
critical point conditions (dPjdp), = 0 and (~3’P/dp’)~ = 0. 

Locus J :  J is rather uninteresting. It intersects B and also B ,  at its 
termination point on the temperature axis at the Boyle temperature T,. 
J has a maximum point in the P-T diagram where it crosses C. It can in 
principle have a maximum point in the p-T diagram, where it would cross A,  
but in practice such a point lies beyond the fusion curve. So J loops around 
the critical point, with PV < (>) RT, 2 < (>) 1 at points inside (outside) 
the loop. 

5 AMAGAT LINE A 

Along the Amagat line A, 

and Z is a maximum along isochores. On A the tangent to an isochore 
in the P-T diagram passes through the origin. In the liquid region the isochores 
are too steep, but since one expects (d2P/dT2)v to be negative, except in the 
liquid close to the critical point, the isochores will bend over with decreasing 
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260 J. STEPHENSON AND H. K. LEUNG 

slope, and eventually a point of tangency occurs. Data for argon does not 
extend far enough to permit the observation of the termination point T’, 
which would correspond to the temperature at the maximum in the second 
virial coefficient. 

Since the internal energy has the volume derivative 

the locus A corresponds to a minimum in the internal energy U along iso- 
therms. From (24) one sees that A is the locus of inversion in the Joule free 
expansion effect,’ in which a thermally isolated system expands without 
performance of external work so dU = 0. The subsequent temperature 
change can usually be read off graphs of constant U .  Since 

inversion occurs on A, where graphs of constant U have vertical slope in the 
P-T and p-T diagrams. Inside the A locus loop, cooling occurs on expansion. 
For hard-core equations of state the RHS of (24) involves only the attractive 
term, which we have taken to be a/V2,  and is always positive. In this situation 
there is no inversion, or A locus, and only Joule cooling takes place. 

The geometrical features of A are as follows. A intersects AT (=BY) at 
its termination point TA . If A passes through a maximum in the P-T diagram 
then it intersects AP (I C,) at this point, and if A passes through a maximum 
in the p-T diagram before reaching the fusion curve, then it intersects AY at 
this point. Also at this latter point (a2P/dT2) ,  = 0, so a locus of constant 
volume specific heat Cv extrema (maxima) along isotherms would pass 
through this maximum point on A, where also 2 inflects as a function of T 
along isochores. 

The “experimental” loci A, AP and Av for argon are concave (upwards) 
in both the P-T and p-T diagrams, at rather high pressures. Concavity in the 
p-T diagram implies that two intersections between A and AY must occur 
before A bends down towards the temperature axis, together with an associ- 
ated looping locus of C, maxima. However, our undue extrapolation of the 
fitted equation of state for argonS into such high pressures and temperatures 
is more likely the cause of these particular geometrical features. 

Finally we note that if A were to intersect AT again, it would do so at a 
point where (d2U/aV2), = 0 and the internal energy U inflects as a function 
of V along isotherms. The portion of the A locus beyond this point would then 
correspond to maxima of U along isotherms. Such behaviour does not occur 
for argon. 
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EQUATIONS OF STATE FOR FLUIDS I1 26 I 

6 BOYLE LINE B 

Along the Boyle line 

and Z and PV are at a minimum when graphed as functions of P ,  or of V, 
along isotherms.' The Boyle line terminates at TB on the temperature axis, 
along with J and B,, and also the locus of inflexion points of isotherms in the 
P-p  diagram, P,, which is defined by (d2p/dp2)T = 0. For small p this last 
mentioned locus has the form p - - B/3C, and so lies between B and B,. 
The Boyle line loops around the critical point inside J and generally terminates 
on the liquid branch of the coexistence curve. B passes through a maximum 
in the P-T diagram where it intersects the locus Bp (= C,). If B were to have a 
maximum in the p-T diagram, it would intersect AT (=BB,)  there, but no 
such point of this type occurs for argon. 

7 CHARLES LINE C 

The Charles line is better known as the Joule-Thomson inversion curve 
along which 

(g), = [ (g)p - $1 = 0. 
C loops around the critical point, starting at the temperature axis at T,, 
where it meets B, (= C,) and ending on the liquid branch of the coexistence 
curve. (dZ /dT) ,  > 0 inside the loop. At the maximum point on C in the P-T 
diagram C intersects C,, and 2 inflects as a function of temperature along 
isobars, with 

P a2v g)p = RT (F)p = O. 

The locus of constant pressure specific heat C ,  extrema, which are maxima 
here, passes through the maximum point too. 2 is a maximum along isobars 
on C between Tc and the highest point in the P-T diagram, and Z is a mini- 
mum along isobars thereafter round to the liquid side of the vaporization 
curve. 

Since the enthalpy H has the pressure derivative 

(g), = v - T ( E )  P 3 
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262 J.  STEPHENSON A N D  H. K .  LEUNG 

it is obvious H is a minimum along isotherms at the inversion curve. The 
temperature change during the Joule-Thomson isenthalpic throttling process 
is then described by the usual coefficient’ (compare with RHS of (27)): 

which is positive inside the loop of the inversion curve C,  where cooling occurs 
on expansion. Finally one observes that C does not in practice exhibit a 
maximum in the p-T plane, but if it did intersection with A P  (= C,) would 
occur. 

8 ADDITIONAL LOCI 

If one extends the equation of state to the region inside the coexistence 
curve it is well-known that eventually the mechanical stability requirement 
(dP/dp), > 0 for positive isotherm slope breaks down. The locus PI, on 
which (dP/lJp) ,  = 0, passes through the critical point and may easily be 
calculated numerically. Also the zero pressure locus, P o ,  may be obtained. 
This locus trivially divides the p-T diagram into regions in which the fluid 
is under tension or pressure. The point of interest here is that the two loci 
just introduced do intersect in practice, and there is a definite maximum 
temperature, less than critical, up to which the liquid can sustain a tension 
without becoming mechanically unstable. The zero pressure locus has a 
vertical tangent in the p vs T diagram at this intersection point, which for 
argon occurs at 136 K, where TIT, = 0.901 and p/p, z 1.58. Of course the 
usual criticisms of extending the equation of state into a metastable region 
apply to this discussion. The consequences of the intersection of the zero 
pressure locus with the mechanical stability limit locus are rather curious. 
Immediately from their defining equations, Table I, one observes that the 
loci B, BT and A T  all pass through this intersection point. This explains why 
AT descends into the comparatively low pressure and temperature region, 
and why Br has a “second branch” in the liquid as noted previously. The 
relevant loci are illustrated in Figure 3. 

9 CONCLUDING REMARKS 

In this paper we have given explicit expressions for calculating ten character- 
istic curves and their six termination temperatures from the equation of state 
of fluids and the second virial coefficient respectively. By obtaining these 
characteristic curves for argon, we have been able to determine to what 
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EQUATIONS OF STATE FOR FLUIDS I1 263 

extent the schematic description due to Brown2 is adequate. We find some 
additional features concerning multiple intersections, and an extra “branch,” 
for B,. Also, in practice certain curves terminate on the fusion curve ( J ,  A, 
A,, AY and the second branch of B,), whereas others enter the comparatively 
low pressure and temperature region, and end either at the critical point 
( B p ,  BT and C,) or on the liquid branch of the coexistence curve (B, C, A ,  
and the second branch of BT). The ability of hard-core type equations of state 
to account for characteristic curves is the subject of the following paper.3 
Numerical values of TB, Tc and TF for argon have been extracted from the 
second virial coefficient of Gosman et aL5 The six termination temperatures 
will play an important role in our analysis of virial coefficients later in this 
series of papers. 
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